Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(6): 1577-1582, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437371

RESUMO

Current imaging spectrometers are developed towards a large field of view (FOV) as well as high resolution to obtain more spatial and spectral information. However, imaging spectrometers with a large FOV and high resolution produce a huge image data cube, which increases the difficulty of spectral data acquisition and processing. In practical applications, it is more reasonable and helpful to identify different targets within a large FOV with different spectral resolutions. In this paper, a compact multi-spectral-resolution Wynne-Offner imaging spectrometer with a long slit is proposed by introducing a special diffraction grating with multi-groove densities at different areas. With the increasing of the groove density and the slit length, the astigmatism of the Wynne-Offner imaging spectrometer increases sharply. Therefore, the relationships between the astigmatism and both the groove density and slit length are studied. Moreover, a holographic grating is introduced. The holographic aberrations produced are utilized to balance the residual astigmatism of the imaging spectrometer. The design results show that the system is only 60m m×115m m×103m m in volume but achieves both a long slit of 20 mm in length and a waveband from 400 nm to 760 nm with three kinds of spectral resolutions of 2 nm, 1 nm, and 0.5 nm. The designed compact multi-spectral-resolution Wynne-Offner imaging spectrometer can be widely applied in the fields of crop classification and pest detection, which require both a large FOV and multiple spectral resolutions.

2.
Opt Express ; 30(26): 48075-48090, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558722

RESUMO

Snapshot hyperspectral imaging is superior to scanning spectrometers due to its advantage in dimensionality, allowing longer pixel dwell time and higher data cube acquisition efficiency. Due to the trade-off between spatial and spectral resolution in snapshot spectral imaging technologies, further improvements in the performance of snapshot imaging spectrometers are limited. Therefore, we propose a cemented-curved-prism-based integral field spectrometer (CIFS), which achieves high spatial and high spectral resolution imaging with a high numerical aperture. It consists of a hemispherical lens, a cemented-curved-prism and a concave spherical mirror. The design idea of aplanatic imaging and sharing-optical-path lays the foundation for CIFS to exhibit high-resolution imaging in a compact structure. The numerical model between the parameters of optical elements and the spectral resolution of the system is established, and we analyze the system resolution influenced by the hemispherical lens and the cemented-curved-prism. Thus, the refractive index requirements of the hemispherical lens and the cemented-curved-prism for the optimal spatial and spectral resolution imaging of the system are obtained, providing guidance for the construction of CIFS. The designed CIFS achieves pupil matching with a 1.8 f-number lenslet array, sampling 268 × 76 spatial points with 403 spectral channels in the wavelength band of 400 to 760 nm. The spectral and spatial resolution are further evaluated through a simulation experiment of spectral imaging based on Zemax. It paves the way for developing integral field spectrometers exhibiting high spatial and high spectral resolution imaging with high numerical aperture.

3.
ACS Appl Mater Interfaces ; 14(18): 21758-21767, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500101

RESUMO

Structural colors based on the macro- or nanostructure formation are ubiquitous in nature, having great prospects in many fields as a result of their environmentally friendly and long-term stable characteristics compared to pigments or dyes. However, the current fabrication techniques still face challenges for the generation of high-quality structural color patterns, especially at the macroscale, in an efficient way. Here, we demonstrate a method that exploits a flexible scanning process of generating macropatterns to convert the contour profiles into well-defined sub-micrometer grating structures with unprecedented vivid structural colors, at high speed and low cost on the graphene oxide film. The nature of dynamic beam shaping of the laser line spot allows us to flexibly construct the complex patterns at high speed, in sharp contrast to the traditional point-by-point laser processing. Moreover, the multicolor display of the patterns can be carried out by simply modulating the laser polarization to change the orientation of the sub-micrometer structures, and this nanopainting strategy is further explored to flexibly design the composite image for potential anti-counterfeiting applications.

4.
Sci Rep ; 12(1): 1255, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075165

RESUMO

In this paper, an Asymmetric Electric Split-Ring Resonator (AESRR) metamaterial structure is proposed to explore the interaction between metamaterials and electromagnetic waves with the influence of Fano resonance on electromagnetic properties. With the symmetry of basic electric Split-Ring Resonator (eSRR) being broken, a new Fano resonant peak appears at around 11.575 GHz and this peak is very sensitive to the dielectric environment. Based on the proposed high sensitivity of AESRR, a microwave sensor based on a 13 × 13 arrays of AESRR was designed and verified using printed circuit board (PCB) technology. T-shape channel was integrated to the sensor by grooving in the FR-4 substrate which improved the integration and provided the feasibility of liquids detection. Seven organic liquids and four dielectric substrates are measured by this sensor. The measured results show the transmission frequency shifts from 11.575 to 11.150 GHz as the liquid samples permittivity changes from 1 to 7 and the transmission frequency shifts from 11.575 to 8.260 GHz as the solid substrates permittivity changes from 1 to 9. The results have proven the improved sensitivity and the larger frequency shift ∆f on material under test (MUTs) compared with the conventional reported sensor. The relative permittivity of liquid samples and solid samples can be obtained by establishing approximate models in CST, respectively. Two transcendental equations derived from measured results are proposed to predict the relative permittivity of liquid samples and solids samples. The accuracy and reliability of measured results and predicted results are numerically verified by comparing them with literature values. Thus, the proposed sensor has many advantages, such as low-cost, high-sensitivity, high-robustness, and extensive detecting range, which provided a great potential to be implemented in a lab-on-a-chip sensor system in the future.

5.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 908-919, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567274

RESUMO

A multiplex PCR method was developed to detect the main pathogens of Qinghai Tibetan sheep endometritis. First, the genomes of five standard bacterial strains were extracted and specific primers were selected; the multiplex PCR method was established by using the genome of the standard strain as a template. The samples were collected by sterile cotton swab from Tibetan sheep uterus, and then placed in LB medium and numbered. After 48 h, the genomes of cultured bacteria were extracted and detected by single PCR method, then the positive samples were recorded. The positive samples detected by single PCR were selected for multiplex PCR detection and recorded again. The coincidence rate between these two methods was calculated to measure the accuracy of multiplex PCR. In order to identify the species of the pathogen, 30 positive samples verified by single and multiplex PCR were randomly selected for bacterial isolation and identification. In the 600 samples, the infected ratio of Streptococcus agalactiae (GBS) was 47.33%, Escherichia coli 34.83%, Staphylococcus aureus 6.5%, Salmonella and Trueperella pyogenes were negatively detected. Among the positive samples detected by multiplex PCR, the positive ratio of GBS was 45.50%, E. coli 33.50%, S. aureus 6.5%. Comparison of two detection results, Multiplex PCR detection coincidence rate is more than 95%. The isolated pathogens were identified as E. coli, GBS and S. aureus, which was consistent with the results of two methods. The multiplex PCR method was successfully established and the main pathogens of endometritis in Qinghai Tibetan sheep were GBS, E. coli and S. aureus.


Assuntos
Bactérias , Técnicas Bacteriológicas , Endometrite , Reação em Cadeia da Polimerase Multiplex , Doenças dos Ovinos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Endometrite/microbiologia , Endometrite/veterinária , Feminino , Reação em Cadeia da Polimerase Multiplex/normas , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/microbiologia , Tibet
6.
Front Vet Sci ; 7: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426380

RESUMO

Endometritis is one of the main diseases which harm sheep husbandry. Astragalin and chlorogenic acid (CGA) are common active ingredients of traditional Chinese medicine (TCM) with immunoprotective, antioxidant, and anti-inflammatory properties. In the present study, sheep endometrial epithelium cells (SEECs) were successfully purified and identified, and the in vitro inflammation model of SEECs induced by Escherichia coli (E. coli) was successfully established. To explore the effect of astragalin and CGA on the inflammation induced by E. coli and its potential mechanism, six groups were set up, namely, group C, M, astragalin, CGA, BAY, and STR. Cells in group C were incubated with DMEM/F12 for 6 h, while cells in group M, astragalin, CGA, BAY, and STR were incubated with DMEM/F12, astragalin, CGA, BAY, and STR for 3 h, respectively, followed by E. coli infection at a multiplicity of infection (MOI) of 1 E. coli per cell for 3 h. Subsequently, the cells and the supernatant were collected to detect the expression of genes in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway by ELISA, qPCR, and western blot. The results showed that E. coli could induce inflammation of SEECs in vitro, while astragalin and CGA could alleviate the inflammatory response induced by E. coli via inhibiting the activation of the TLR4/NF-κB signaling pathway, which provides a theoretical and experimental foundation for preventing sheep endometritis clinically.

7.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235529

RESUMO

In this paper, an extremely sensitive microwave sensor is designed based on a complementary symmetric S shaped resonator (CSSSR) to evaluate dielectric characteristics of low-permittivity material. CSSSR is an artificial structure with strong and enhanced electromagnetic fields, which provides high sensitivity and a new degree of freedom in sensing. Electromagnetic simulation elucidates the effect of real relative permittivity, real relative permeability, dielectric and magnetic loss tangents of the material under test (MUT) on the resonance frequency and notch depth of the sensor. Experiments are performed at room temperature using low-permittivity materials to verify the concept. The proposed design provides differential sensitivity between 102% to 95% as the relative permittivity of MUT varies from 2.1 to 3. The percentage error between simulated and measured results is less than 0.5%. The transcendental equation has been established by measuring the change in the resonance frequency of the fabricated sensor due to interaction with the MUT.

8.
Sensors (Basel) ; 19(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067634

RESUMO

In this paper, complementary metamaterial sensor is designed for nondestructive evaluation of dielectric substrates. The design concept is based on electromagnetic stored energy in the complementary circular spiral resonator (CCSR), which is concentrated in small volume near the host substrate at resonance. This energy can be employed to detect various electromagnetic properties of materials under test (MUT). Effective electric permittivity and magnetic permeability of the proposed sensor is extracted from scattering parameters. Sensitivity analysis is performed by varying the permittivity of MUT. After sensitivity analysis, a sensor is fabricated using standard PCB fabrication technique, and resonance frequency of the sensor due to interaction with different MUT is measured using vector network analyzer (AV3672series). The transcendental equation is derived for the fabricated sensor to calculate relative permittivity for unknown MUTs. This method is very simple and requires calculating only the resonant frequency, which reduces the cost and computation time.

9.
Opt Express ; 27(8): 11651-11660, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053008

RESUMO

Open loop liquid crystal adaptive optics (LC AO) has overcome the disadvantage of low energy efficiency after years of research, and its use is very promising in ground-based large aperture telescopes for visible band imaging. However, the low system bandwidth of open loop LC AO still limits its application. In order to solve this problem, we bring the concept of proportional-derivative control (which is widely used in closed loop systems) into open loop LC AO in this paper. Experiment results verified that the system -3 dB rejection bandwidth could improve from 75 Hz to 112 Hz when tip-tilt aberration is introduced, and the mean relative contrast ratio of imaging results could improve 80% when high-order aberrations are introduced. The proposed control method has significant meaning in promoting the application of open loop LC AO in ground-based large aperture telescopes for visible imaging.

10.
Sensors (Basel) ; 19(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769942

RESUMO

This paper describes a low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants. The proposed sensor was fabricated and tested to effectively identify different liquids commonly used in daily life and determine the concentrations of various ethanol⁻water mixtures at by measuring the resonant frequency of the CCSR. Using acrylic paint, a square channel was drawn at the most sensitive position of the microwave sensor to ensure accuracy of the experiment. To estimate the dielectric constants of the liquids under test, an approximate model was established using a High-Frequency Simulator Structure (HFSS). The results obtained agree very well with the existing data. Two parabolic equations were calculated and fitted to identify unknown liquids and determine the concentrations of ethanol⁻water mixtures. Thus, our microwave sensor provides a method with high sensitivity and low consumption of material for liquid monitoring and determination, which proves the feasibility and broad prospect of this low-cost system in industrial application.

11.
Sci Rep ; 7(1): 10034, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855552

RESUMO

There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.

12.
Opt Express ; 25(9): 9926-9937, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468372

RESUMO

In this paper, we present a heuristic method to simplify the liquid crystal adaptive optics system (LCAOS) into a single-input-single-output (SISO) system, then build the dynamic model of LCAOS based on subspace identification. Results show that the identified model could accurately describe the dynamical behavior of LCAOS (97% match), with extremely low complexity. The wonderful features of low complexity and high precision, make the identified model highly beneficial for model based controller design, system analysis and dynamical behavior simulation of liquid crystal adaptive optics systems.

13.
Opt Express ; 24(24): 27494-27508, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906321

RESUMO

Almost all the deformable mirror (DM) based adaptive optics systems (AOSs) used on large aperture telescopes work at the infrared waveband due to the limitation of the number of actuators. To extend the imaging waveband to the visible, we propose a DM and Liquid crystal wavefront corrector (DM/LCWFC) combination AOS. The LCWFC is used to correct the high frequency aberration corresponding to the visible waveband and the aberrations of the infrared are corrected by the DM. The calculated results show that, to a 10 m telescope, DM/LCWFC AOS which contains a 1538 actuators DM and a 404 × 404 pixels LCWFC is equivalent to a DM based AOS with 4057 actuators. It indicates that the DM/LCWFC AOS is possible to work from visible to infrared for larger aperture telescopes. The simulations and laboratory experiment are performed for a 2 m telescope. The experimental results show that, after correction, near diffraction limited resolution USAF target images are obtained at the wavebands of 0.7-0.9 µm, 0.9-1.5 µm and 1.5-1.7 µm respectively. Therefore, the DM/LCWFC AOS may be used to extend imaging waveband of larger aperture telescope to the visible. It is very appropriate for the observation of spatial objects and the scientific research in astronomy.

14.
Opt Express ; 22(12): 14221-8, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977519

RESUMO

We present a novel method to measure the interaction matrix of liquid-crystal adaptive optics systems, by applying least squares method to mitigate the impact of measurement noise. Experimental results showed a dramatic gain in the accuracy of interaction matrix, and a considerable improvement in image resolution with open loop adaptive optics correction.

15.
Opt Lett ; 37(16): 3324-6, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381245

RESUMO

A single-frame overdriving scheme was employed to improve the temporal response of the active matrix addressing liquid-crystal spatial light modulator used in an open-loop adaptive optics system (OLAOS). Optimal time distribution giving minimum wavefront residual error for the OLAOS was demonstrated. As a result, the measured -3 decibels rejection frequency was increased from 26 to 35 Hz, and the image quality was significantly improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...